Semiparametric Estimation in Multivariate Nonstationary Time Series Models
نویسندگان
چکیده
A system of multivariate semiparametric nonlinear time series models is studied with possible dependence structures and nonstationarities in the parametric and nonparametric components. The parametric regressors may be endogenous while the nonparametric regressors are assumed to be strictly exogenous. The parametric regressors may be stationary or nonstationary and the nonparametric regressors are nonstationary integrated time series. Semiparametric least squares (SLS) estimation is considered and its asymptotic properties are derived. Due to endogeneity in the parametric regressors, SLS is not consistent for the parametric component and a semiparametric instrumental variable (SIV) method is proposed instead. Under certain regularity conditions, the SIV estimator of the parametric component is shown to have a limiting normal distribution. The rate of convergence in the parametric component depends on the properties of the regressors. The conventional √ n rate may apply even when nonstationarity is involved in both sets of regressors.
منابع مشابه
Identification, Estimation and Specification In a Class of Semiparametric Time Series Models
In this paper, we consider some identification, estimation and specification problems in a class of semi–linear time series models. Existing studies for the stationary time series case have been reviewed and discussed. We also establish some new results for the integrated time series case. In the meantime, we propose a new estimation method and establish a new theory for a class of semi–linear ...
متن کاملSemiparametric Estimation in Triangular System Equations with Nonstationarity
A system of multivariate semiparametric nonlinear time series models is studied with possible dependence structures and nonstationarities in the parametric and nonparametric components. The parametric regressors may be endogenous while the nonparametric regressors are assumed to be strictly exogenous. The parametric regressors may be stationary or nonstationary and the nonparametric regressors ...
متن کاملEfficiency Improvements in Inference on Stationary and Nonstationary Fractional Time Series
We consider a time series model involving a fractional stochastic component, whose integration order can lie in the stationary/invertible or nonstationary regions and be unknown, and additive deterministic component consisting of a generalised polynomial. The model can thus incorporate competing descriptions of trending behaviour. The stationary input to the stochastic component has parametric ...
متن کاملEfficiency Improvements in Inference on Stationary and Nonstationary Fractional Time Series1 by P. M. Robinson
We consider a time series model involving a fractional stochastic component, whose integration order can lie in the stationary/invertible or nonstationary regions and be unknown, and an additive deterministic component consisting of a generalized polynomial. The model can thus incorporate competing descriptions of trending behavior. The stationary input to the stochastic component has parametri...
متن کاملFunctional Coefficient Nonstationary Regression ∗
This paper studies a general class of nonlinear varying coefficient time series models with possible nonstationarity in both the regressors and the varying coefficient components. The model accommodates a cointegrating structure and allows for endogeneity with contemporaneous correlation among the regressors, the varying coefficient drivers, and the residuals. This framework allows for a mixtur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011